• Chinese medical journal · Jun 2024

    Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.

    • Tingting Liu, Chao Jin, Jing Sun, Lina Zhu, Chun Wang, Feng Xiao, Xiaochang Liu, Liying Lv, Xiaoke Yang, Wenjing Zhou, Chao Tan, Xianli Wang, and Wei Wei.
    • School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
    • Chin. Med. J. 2024 Jun 14.

    BackgroundG protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).MethodsThe blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.ResultsIn patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (Tregs), an increase in the cluster of differentiation 8 positive (CD8+) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8+ T cells, and induced the proportion of Tregs. Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.ConclusionParoxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cell in RA.Copyright © 2024 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.