• Neuroscience · Sep 2024

    Mechanical force activates the light-dependent channels TRP and TRPL in excised patches from the rhabdomere of Drosophila photoreceptors.

    • Ricardo Delgado, Christian A M Wilson, Leonardo Caballero, Francisco Melo, and Juan Bacigalupo.
    • Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras, 3425, Santiago Chile. Electronic address: rdelgado@uchile.cl.
    • Neuroscience. 2024 Sep 13; 555: 233123-31.

    AbstractDrosophila phototransduction in light-sensitive microvilli involves a metabotropic signaling cascade. Photoisomerized rhodopsin couples to G-protein, activating phospholipase C, which cleaves phosphatidylinositol bisphosphate (PIP2) into inositol trisphosphate, diacylglycerol (DAG) and a proton. DAG is converted into phosphatidic acid by DAG-kinase and metabolized to L-linoleoyl glycerol (2-LG) by DAG-lipase. This complex enzyme cascade ultimately opens the light-dependent transient receptor potential channels, TRP and TRPL. PIP2, DAG, H+ and 2-LG are possible channel activators, either individually or combined, but their direct participation in channel-gating remains unresolved. Molecular interaction with the channels, modification of the channels' lipid moiety and mechanical force on the channels by changes in the membrane structure derived from light-dependent changes in lipid composition are possible gating agents. In this regard, mechanical activation was suggested, based on a rapid light-dependent contraction of the photoreceptors mediated by the phototransduction cascade. Here, we further examined this possibility by applying force to inside-out patches from the microvilli membrane by changing the pressure in the pipette or pulling the membrane with a magnet through superparamagnetic nanospheres. The channels were opened by mechanical force, while mutant lacking both channels was insensitive to mechanical stimulation. Atomic Force Microscopy showed that the stiffness of an artificial phospholipid bilayer was increased by arachidonic acid and diacylglycerol whereas elaidic acid was ineffective, mirroring their relative effects in channel activity previously observed electrophysiologically. Together, the results are consistent with the notion that light-induced changes in lipid composition alter the membrane structure, generating mechanical force on the channels leading to channel opening.Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.