• Acta Anaesthesiol Scand · Nov 2024

    ICURE: Intensive care unit (ICU) risk evaluation for 30-day mortality. Developing and evaluating a multivariable machine learning prediction model for patients admitted to the general ICU in Sweden.

    • Tobias Siöland, Araz Rawshani, Bengt Nellgård, Johan Malmgren, Jonatan Oras, Keti Dalla, Giovanni Cinà, Lars Engerström, and Fredrik Hessulf.
    • Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    • Acta Anaesthesiol Scand. 2024 Nov 1; 68 (10): 137913891379-1389.

    BackgroundA prediction model that estimates mortality at admission to the intensive care unit (ICU) is of potential benefit to both patients and society. Logistic regression models like Simplified Acute Physiology Score 3 (SAPS 3) and APACHE are the traditional ICU mortality prediction models. With the emergence of machine learning (machine learning) and artificial intelligence, new possibilities arise to create prediction models that have the potential to sharpen predictive accuracy and reduce the likelihood of misclassification in the prediction of 30-day mortality.MethodsWe used the Swedish Intensive Care Registry (SIR) to identify and include all patients ≥18 years of age admitted to general ICUs in Sweden from 2008 to 2022 with SAPS 3 score registered. Only data collected within 1 h of ICU admission was used. We had 153 candidate predictors including baseline characteristics, previous medical conditions, blood works, physiological parameters, cause of admission, and initial treatment. We stratified the data randomly on the outcome variable 30-day mortality and created a training set (80% of data) and a test set (20% of data). We evaluated several hundred prediction models using multiple ML frameworks including random forest, gradient boosting, neural networks, and logistic regression models. Model performance was evaluated by comparing the receiver operator characteristic area under the curve (AUC-ROC). The best performing model was fine-tuned by optimizing hyperparameters. The model's calibration was evaluated by a calibration belt. Ultimately, we simplified the best performing model with the top 1-20 predictors.ResultsWe included 296,344 first-time ICU admissions. We found age, Glasgow Coma Scale, creatinine, systolic blood pressure, and pH being the most important predictors. The AUC-ROC was 0.884 in test data using all predictors, specificity 95.2%, sensitivity 47.0%, negative predictive value of 87.9% and positive predictive value of 70.7%. The final model showed excellent calibration. The ICU risk evaluation for 30-day mortality (ICURE) prediction model performed equally well to the SAPS 3 score with only eight variables and improved further with the addition of more variables.ConclusionThe ICURE prediction model predicts 30-day mortality rate at first-time ICU admission superiorly compared to the established SAPS 3 score.© 2024 The Author(s). Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.