• Neuroscience · Jul 2024

    Dynamic role of GlyT1 as glycine sink or source: Pharmacological implications for the gain control of NMDA receptors.

    • Stéphane Supplisson.
    • Institut de Biologie de l'ENS (IBENS), Ecole normale supérieure, Université PSL, CNRS, INSERM, Paris, F-75005, France. Electronic address: stephane.supplisson@bio.ens.psl.eu.
    • Neuroscience. 2024 Jul 25.

    AbstractGlycine transporter 1 (GlyT1) mediates the termination of inhibitory glycinergic receptor signaling in the spinal cord and brainstem, and is also present diffusely in the forebrain. Here, it regulates the ambient glycine concentration and influences the 'glycine' site occupancy of N-methyl-d-aspartate receptors (NMDARs). GlyT1 is a reversible transporter with a substantial, but not excessive, sodium-motive force for uphill transport. This study investigates its role as a potential source of glycine supply, either by reverse uptake or heteroexchange. Indeed, glutamate alone does not induce NMDAR current in "naive" oocytes co-expressing GluN1/GluN2A and GlyT1, a previously characterized cellular model. However, after substantial intracellular glycine accumulation, GlyT1 reverses its transport mode, and begins to release glycine into the external compartment, allowing NMDAR activation by glutamate alone. These uptake-dependent glutamate currents were blocked by ALX-5407 and potentiated by sarcosine, a specific inhibitor and substrate of GlyT1, respectively, suggesting a higher occupancy of the co-agonist site when GlyT1 functions as a glycine source either by reversed-uptake or by heteroexchange. These two glycine release mechanisms can be distinguished by their voltage dependence, as the reversed-uptake cycle decreases at hyperpolarized potentials, whereas heteroexchange electroneutrality preserves glycine efflux and NMDAR activation at these potentials. These results establish GlyT1-mediated efflux as a positive regulator of NMDAR coagonist site occupancy, and demonstrate the efficacy of sarcosine heteroexchange in enhancing coagonist site occupancy. Because NMDAR facilitation by GlyT1-inhibitors and sarcosine relies on different transport mechanisms, their actions may be a source of variability in reversing NMDAR hypofunction in schizophrenia.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…