• Neuroscience · Oct 2024

    Chaotic nature of the electroencephalogram during shallow and deep anesthesia: From analysis of the Lyapunov exponent.

    • Kazuko Hayashi.
    • Kyoto Chubu Medical Center, Department of Anesthesiology, Yagi-cho Yagi Ueno 25, Nantan City, Kyoto 629-0197, Japan; Kyoto Prefectural University of Medicine, Department of Anesthesiology, Meiji University of Integrative Medicine, Department of Clinical Medicine, Japan. Electronic address: zukko@koto.kpu-m.ac.jp.
    • Neuroscience. 2024 Oct 4; 557: 116123116-123.

    AbstractIn conscious states, the electrodynamics of the cortex are reported to work near a critical point or phase transition of chaotic dynamics, known as the edge-of-chaos, representing a boundary between stability and chaos. Transitions away from this boundary disrupt cortical information processing and induce a loss of consciousness. The entropy of the electroencephalogram (EEG) is known to decrease as the level of anesthesia deepens. However, whether the chaotic dynamics of electroencephalographic activity shift from this boundary to the side of stability or the side of chaotic enhancement during anesthesia-induced loss of consciousness remains poorly understood. We investigated the chaotic properties of EEGs at two different depths of clinical anesthesia using the maximum Lyapunov exponent, which is mathematically regarded as a formal measure of chaotic nature, using the Rosenstein algorithm. In 14 adult patients, 12 s of electroencephalographic signals were selected during two depths of clinical anesthesia (sevoflurane concentration 2% as relatively deep anesthesia, sevoflurane concentration 0.6% as relatively shallow anesthesia). Lyapunov exponents, correlation dimensions and approximate entropy were calculated from these electroencephalographic signals. As a result, maximum Lyapunov exponent was generally positive during sevoflurane anesthesia, and both maximum Lyapunov exponents and correlation dimensions were significantly greater during deep anesthesia than during shallow anesthesia despite reductions in approximate entropy. The chaotic nature of the EEG might be increased at clinically deeper inhalational anesthesia, despite the decrease in randomness as reflected in the decreased entropy, suggesting a shift to the side of chaotic enhancement under anesthesia.Copyright © 2024 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.