• Neuroscience · Oct 2024

    Review

    Towards discovery and implementation of neurophysiologic biomarkers of Alzheimer's disease using entropy methods.

    • SimmatisLeif E RLERFaculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada., Emma E Russo, Yasemin Altug, Vijairam Murugathas, Josh Janevski, Donghun Oh, Queenny Chiu, Irene E Harmsen, and Nardin Samuel.
    • Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Cove Neurosciences Inc., Toronto, Ontario, Canada.
    • Neuroscience. 2024 Oct 18; 558: 105113105-113.

    AbstractAlzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disease that leads to substantial loss of quality of life. Therapies currently available for AD do not modify the disease course and have limited efficacy in symptom control. As such, novel and precise therapies tailored to individual patients' neurophysiologic profiles are needed. Functional neuroimaging tools have demonstrated substantial potential to provide quantifiable insight into brain function in various neurologic disorders, particularly AD. Entropy, a novel analysis for better understanding the nonlinear nature of neurophysiological data, has demonstrated consistent accuracy in disease detection. This literature review characterizes the use of entropy-based analyses from functional neuroimaging tools, including electroencephalography (EEG) and magnetoencephalography (MEG), in patients with AD for disease detection, therapeutic response measurement, and providing clinical insights.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.