• Transl Res · Dec 2024

    Regulation of Monocyte Apoptosis and DNA Extrusion in Monocyte Extracellular Traps by PSGL-1: Relevance in Systemic Lupus Erythematosus.

    • Antonio Muñoz-Callejas, Inés Sánchez-Abad, Alejandra Ramos-Manzano, San AntonioEstherEImmunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain., Elena González-Sánchez, Javier Silván, Rafael González-Tajuelo, Isidoro González-Álvaro, Javier García-Pérez, Eva G Tomero, Rosario García-Vicuña, Esther F Vicente-Rabaneda, Santos Castañeda, and Ana Urzainqui.
    • Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, 28006, Madrid, Spain; Facultad de Medicina y Biomedicina, Universidad Alfonso X El Sabio, 28691, Madrid, Spain.
    • Transl Res. 2024 Dec 1; 274: 102010-20.

    AbstractSystemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by severe organ damage and lacking curative treatment. While various immune cell types, especially dysfunctional B and T cells and neutrophils, have been related with disease pathogenesis, limited research has focused on the role of monocytes in SLE. Increased DNA extracellular traps, apoptosis and necrosis have been related to lupus pathogenesis. Our goal is to analyze the contribution of P-selectin glycoprotein ligand 1 (PSGL-1) in SLE monocytes to disease pathogenesis by investigating the control exerted by PSGL-1 on monocyte apoptosis and DNA extrusion in extracellular traps (METs). Monocytes from active disease patients (aSLE) exhibited reduced levels of PSGL-1. Importantly, lower PSGL-1 levels in SLE monocytes associated with several clinical characteristics, including anti-dsDNA autoantibodies, lupus anticoagulant, clinical lung involvement, and anemia. Monocytes from SLE patients showed higher susceptibility to apoptosis than healthy donors (HD) monocytes and PSGL-1/P-selectin interaction decreased secondary necrosis in HD but not in aSLE monocytes. Regarding METs, aSLE monocytes exhibited higher susceptibility to generate METs than HD monocytes. The interaction of HD monocytes with P-selectin induced Syk activation and reduced the levels of DNA extruded in METs. However, in aSLE monocytes, PSGL-1/P-selectin interaction did not activate Syk or reduce the amount of extruded DNA. Our data suggest a dysfunctional PSGL-1/P-selectin axis in aSLE monocytes, unable to reduce secondary necrosis or the amount of DNA released into the extracellular medium in METs, potentially contributing to lupus pathogenesis.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.