• Brit J Hosp Med · Aug 2024

    Enhancing the Diagnostic Accuracy of Sacroiliitis: A Machine Learning Approach Applied to Computed Tomography Imaging.

    • Qingsong Fu, Xueru Yuan, Xinyou Han, Weibin Wang, Jiakai Zhang, and Xinhua Yuan.
    • Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China.
    • Brit J Hosp Med. 2024 Aug 30; 85 (8): 1131-13.

    AbstractAims/Background Sacroiliitis is a challenging condition to diagnose accurately due to the subtle nature of its presentation in imaging studies. This study aims to improve the diagnostic accuracy of sacroiliitis by applying advanced machine learning techniques to computed tomography (CT) images. Methods We employed five convolutional neural network (CNN) models-Visual Geometry Group 16-layer Network (VGG16), ResNet101, DenseNet, Inception-v4, and ResNeXt-50-to analyze a dataset of 830 CT images, including both sacroiliitis and non-sacroiliitis cases. Each model's performance was evaluated using metrics such as accuracy, precision, recall, F1 score, Receiver Operating Characteristic (ROC), and Area Under the Curve (AUC). The interpretability of the models' decisions was enhanced using Gradient-weighted Class Activation Mapping (Grad-CAM) visualization. Results The ResNeXt-50 and Inception-v4 models demonstrated superior performance, achieving the highest accuracy and F1 scores among the tested models. Grad-CAM visualizations offered insights into the decision-making processes, highlighting the models' focus on relevant anatomical features critical for accurate diagnosis. Conclusion The use of CNN models, particularly ResNeXt-50 and Inception-v4, significantly improves the diagnosis of sacroiliitis from CT images. These models not only provide high diagnostic accuracy but also offer transparency in their decision-making processes, aiding clinicians in understanding and trusting Artificial Intelligence (AI)-driven diagnostics.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…