• Brit J Hosp Med · Aug 2024

    Observational Study

    Development and internal validation of an artificial intelligence-assisted bowel sounds auscultation system to predict early enteral nutrition-associated diarrhoea in acute pancreatitis: a prospective observational study.

    • Chengcheng Liu, Li Wu, Rui Xu, Zhiwei Jiang, Xiaoping Xiao, Nian Song, Qianhong Jin, and Zhengxiang Dai.
    • School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
    • Brit J Hosp Med. 2024 Aug 30; 85 (8): 1151-15.

    AbstractAims/Background An artificial intelligence-assisted prediction model for enteral nutrition-associated diarrhoea (ENAD) in acute pancreatitis (AP) was developed utilising data obtained from bowel sounds auscultation. This model underwent validation through a single-centre, prospective observational study. The primary objective of the model was to enhance clinical decision-making by providing a more precise assessment of ENAD risk. Methods The study enrolled patients with AP who underwent early enteral nutrition (EN). Real-time collection and analysis of bowel sounds were conducted using an artificial intelligence bowel sounds auscultation system. Univariate analysis, multicollinearity analysis, and logistic regression analysis were employed to identify risk factors associated with ENAD. The random forest algorithm was utilised to establish the prediction model, and partial dependence plots were generated to analyse the impact of risk factors on ENAD risk. Validation of the model was performed using the optimal model Bootstrap resampling method. Predictive performance was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and an area under the receiver operating characteristic (ROC) curve. Results Among the 133 patients included in the study, the incidence of ENAD was 44.4%. Six risk factors were identified, and the model's accuracy was validated through Bootstrap iterations. The prediction accuracy of the model was 81.10%, with a sensitivity of 84.30% and a specificity of 77.80%. The positive predictive value was 82.60%, and the negative predictive value was 80.10%. The area under the ROC curve was 0.904 (95% confidence interval: 0.817-0.997). Conclusion The artificial intelligence bowel sounds auscultation system enhances the assessment of gastrointestinal function in AP patients undergoing EN and facilitates the construction of an ENAD predictive model. The model demonstrates good predictive efficacy, offering an objective basis for precise intervention timing in ENAD management.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…