• World Neurosurg · Nov 2024

    Exploring the Combination of Computer Vision and Surgical Neuroanatomy - A Workflow Involving Artificial Intelligence for the Identification of Skull Base Foramina.

    • Andre A Payman, Ivan El-Sayed, and Roberto Rodriguez Rubio.
    • Skull Base and Cerebrovascular Laboratory, University of California, San Francisco, California, USA; Department of Neurological Surgery, University of California, San Francisco, California, USA.
    • World Neurosurg. 2024 Nov 1; 191: e403e410e403-e410.

    BackgroundThe skull base is a complex region in neurosurgery, featuring numerous foramina. Accurate identification of these foramina is imperative to avoid intraoperative complications and to facilitate educational progress in neurosurgical trainees. The intricate landscape of the skull base often challenges both clinicians and learners, necessitating innovative identification solutions. We aimed to develop a computer vision model that automates the identification and labeling of the skull base foramina from various image formats, enhancing surgical planning and educational outcomes.MethodsWe employed a deep learning methodology, specifically using a convolutional neural network architecture. Our model was trained on a dataset comprising of 3560 high-resolution, annotated images of the skull base, taken from various perspectives and lighting conditions to ensure model generalizability. Model performance was quantitatively assessed using precision and recall metrics.ResultsThe convolutional neural network model demonstrated strong performance, achieving an average precision of 0.77. At a confidence threshold of 0.28, the model reached an optimal precision of 90.4% and a recall of 89.6%. Validation on an independent test set of images corroborated the model's capability to consistently and accurately identify and label multiple skull base foramina across diverse imaging scenarios.ConclusionsThis study successfully introduces a highly accurate computer vision model tailored for the identification of skull base foramina, illustrating the model's potential as a transformative tool in anatomical education and intraoperative structure visualization. The findings suggest promising avenues for future research into automated anatomical recognition models, suggesting a trajectory toward increasingly sophisticated aids in neurosurgical operations and education.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.