• Critical care medicine · Jul 2024

    Machine Learning Identifies Higher Survival Profile In Extracorporeal Cardiopulmonary Resuscitation.

    • Ruben Crespo-Diaz, Julian Wolfson, Demetris Yannopoulos, and Jason A Bartos.
    • Mayo Clinic, Department of Cardiovascular Diseases, Rochester, MN.
    • Crit. Care Med. 2024 Jul 1; 52 (7): 106510761065-1076.

    ObjectivesExtracorporeal cardiopulmonary resuscitation (ECPR) has been shown to improve neurologically favorable survival in patients with refractory out-of-hospital cardiac arrest (OHCA) caused by shockable rhythms. Further refinement of patient selection is needed to focus this resource-intensive therapy on those patients likely to benefit. This study sought to create a selection model using machine learning (ML) tools for refractory cardiac arrest patients undergoing ECPR.DesignRetrospective cohort study.SettingCardiac ICU in a Quaternary Care Center.PatientsAdults 18-75 years old with refractory OHCA caused by a shockable rhythm.MethodsThree hundred seventy-six consecutive patients with refractory OHCA and a shockable presenting rhythm were analyzed, of which 301 underwent ECPR and cannulation for venoarterial extracorporeal membrane oxygenation. Clinical variables that were widely available at the time of cannulation were analyzed and ranked on their ability to predict neurologically favorable survival.InterventionsML was used to train supervised models and predict favorable neurologic outcomes of ECPR. The best-performing models were internally validated using a holdout test set.Measurements And Main ResultsNeurologically favorable survival occurred in 119 of 301 patients (40%) receiving ECPR. Rhythm at the time of cannulation, intermittent or sustained return of spontaneous circulation, arrest to extracorporeal membrane oxygenation perfusion time, and lactic acid levels were the most predictive of the 11 variables analyzed. All variables were integrated into a training model that yielded an in-sample area under the receiver-operating characteristic curve (AUC) of 0.89 and a misclassification rate of 0.19. Out-of-sample validation of the model yielded an AUC of 0.80 and a misclassification rate of 0.23, demonstrating acceptable prediction ability.ConclusionsML can develop a tiered risk model to guide ECPR patient selection with tailored arrest profiles.Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine and Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.