• Neuroscience · Sep 2024

    Short term plasticity at hippocampal mossy fiber synapses.

    • Catherine Marneffe, Ana Moreira-de-Sá, Simon Lecomte, Anaël Erhardt, and Christophe Mulle.
    • Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
    • Neuroscience. 2024 Sep 26.

    AbstractShort-term synaptic plasticity refers to the regulation of synapses by their past activity on time scales of milliseconds to minutes. Hippocampal mossy fiber synapses onto CA3 pyramidal cells (Mf-CA3 synapses) are endowed with remarkable forms of short-term synaptic plasticity expressed as facilitation of synaptic release by a factor of up to ten-fold. Three main forms of short-term plasticity are distinguished: 1) Frequency facilitation, which includes low frequency facilitation and train facilitation, operating in the range of tens of milliseconds to several seconds; 2) Post-tetanic potentiation triggered by trains of high frequency stimulation, which lasts several minutes; 3) Finally, depolarization-induced potentiation of excitation, based on retrograde signaling, with an onset and offset of several minutes. Here we describe the proposed mechanisms for short-term plasticity, mainly based on the kinetics of presynaptic Ca2+ transients and the Ca2+ sensor synaptotagmin 7, on cAMP-dependent mechanisms and readily releasable vesicle pool, and on the regulation of presynaptic K+ channels. We then review evidence for a physiological function of short-term plasticity of Mf-CA3 synapses in information transfer between the dentate gyrus and CA3 in conditions of natural spiking, and discuss how short-term plasticity counteracts robust feedforward inhibition in a frequency-dependent manner. Although DG-CA3 connections have long been proposed to play a role in memory, direct evidence for an implication of short-term plasticity at Mf-CA3 synapses is mostly lacking. The mechanistic knowledge gained on short-term plasticity at Mf-CA3 synapses should help in designing future experiments to directly test how this evolutionary conserved feature controls hippocampal circuit function in behavioural conditions.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.