• World Neurosurg · Oct 2024

    Federated Learning for Predicting Postoperative Remission of Patients with Acromegaly: A Multicentered study.

    • Wentai Zhang, Xueyang Wu, He Wang, Ruopei Wu, Congcong Deng, Qian Xu, Xiaohai Liu, Xuexue Bai, Shuangjian Yang, Xiaoxu Li, Ming Feng, Qiang Yang, and Renzhi Wang.
    • Department of Thoracic Surgery, Peking University First Hospital, Beijing, China.
    • World Neurosurg. 2024 Oct 30.

    BackgroundDecentralized federated learning (DFL) may serve as a useful framework for machine learning (ML) tasks in multicentered studies, maximizing the use of clinical data without data sharing. We aim to propose the first workflow of DFL for ML tasks in multicentered studies, which can be as powerful as those using centralized data.MethodsA DFL workflow was developed with four steps: registration, local computation, model update, and inspection. A total of 598 participants with acromegaly from PUMCH, and 120 participants from XWH were enrolled. The cohort from PUMCH was further split into five centers. Nine clinical features were incorporated into ML-based models trained based on four algorithms: LR, GBDT, SVM, and DNN. The area under the curve (AUC) of receiver operating characteristic curves was used to evaluate the performance of the models.ResultsModels trained based on DFL workflow performed better than most models in LR (P<0.05), all models in DNN, SVM, and GBDT (P<0.05). Models trained on DFL workflow performed as powerful as models trained on centralized data in LR, DNN, and SVM (P>0.05).ConclusionsWe demonstrate that the DFL workflow without data sharing should be a more appropriate method in ML tasks in multicentered studies. And the DFL workflow should be further exploited in clinical researches in other departments and it can encourage and facilitate multicentered studies.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…