• Brain research · Apr 2007

    Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats.

    • Karsten Schöller, Andreas Trinkl, Mariusz Klopotowski, Serge C Thal, Nikolaus Plesnila, Raimund Trabold, Gerhard F Hamann, Robert Schmid-Elsaesser, and Stefan Zausinger.
    • Department of Neurosurgery, University of Munich Medical Center-Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
    • Brain Res. 2007 Apr 20;1142:237-46.

    AbstractVasogenic brain edema is one of the major determinants for mortality following subarachnoid hemorrhage (SAH). Although the formation of vasogenic brain edema occurs on the microvascular level by opening of endothelial tight junctions and disruption of the basal lamina, microvascular changes following experimental SAH are poorly characterized. The aim of the present study was therefore to investigate the time course of blood-brain barrier (BBB) dysfunction and basal lamina damage following SAH as a basis for the better understanding of the pathophysiology of SAH. SAH was induced in Sprague-Dawley rats by an endovascular filament. Animals were sacrificed 6, 24, 48, and 72 h thereafter (n=9 per group). Microvascular basal lamina damage was quantified by collagen type IV immunostaining. Western blotting was used to quantify collagen IV protein content and bovine serum albumin (BSA) extravasation as a measure for basal lamina damage and blood-brain barrier disruption, respectively. BSA Western blot revealed significant (p<0.05) BBB opening in the cerebral cortex ipsilateral to the hemorrhage beginning 6 h and peaking 48 h after SAH. Significant (p<0.05) basal lamina damage occurred with gradual increase from 24 to 72 h. Basal lamina damage correlated significantly with BBB dysfunction (r=-0.63; p=0.0001). Microvascular damage as documented by collagen IV degradation and albumin extravasation is a long lasting and ongoing process following SAH. Due to its delayed manner microvascular damage may be prone for therapeutic interventions. However, further investigations are needed to determine the molecular mechanisms responsible for basal lamina degradation and hence damage of the microvasculature following SAH.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…