• Neuroscience · Jan 2005

    Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani.

    • N Schuelert and U Dicke.
    • Brain Research Institute, Department of Behavioral Physiology and Developmental Neurobiology, University of Bremen, 28334 Bremen, Germany.
    • Neuroscience. 2005 Jan 1; 134 (2): 617632617-32.

    AbstractNeuronal responses to complex prey-like stimuli and rectangles were investigated in the tectum of the salamander Plethodon shermani using extracellular single-cell recording. Cricket dummies differing in size, contrast or movement pattern or a rectangle were moved singly through the excitatory receptive field of a neuron. Paired presentations were performed, in which a reference stimulus was moved inside and the different cricket dummies or the rectangle outside the excitatory receptive field. Visual object recognition involves much more complex spatial and temporal processing than previously assumed in amphibians. This concerns significant changes in absolute number of spikes, temporal discharge pattern, and receptive field size. At single presentation of stimuli, the number of discharges was significantly changed compared with the reference stimulus, and in the majority of neurons the temporal pattern of discharges was changed in addition. At paired presentation of stimuli, neurons mainly revealed a significant decrease in average spike number and a reduction of excitatory receptive field size to presentation of the reference stimulus inside the excitatory receptive field, when a large-sized cricket stimulus or the rectangle was located outside the excitatory receptive field. This inhibition was significantly greater for the large-sized cricket stimulus than for the rectangle, and indicates the biological relevance of the prey-like stimulus in object selection. The response properties of tectal neurons at single or paired presentation of stimuli indicate that tectal neurons integrate information across a much larger part of visual space than covered by the excitatory receptive field. The spike number of a tectal neuron and the spatio-temporal extent of its excitatory receptive field are not fixed but depend on the context, i.e. the stimulus type and combination. This dynamic processing corresponds with the selection of the stimuli in the visual orienting behavior of Plethodon investigated in a previous study, and we assume that tectal processing is modulated by top down processes as well as feedback circuitries.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…