• Neuroscience · Jan 2025

    Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels.

    • Sana Sarkar, Anuj Pandey, Kumar YadavSanjeevSSystems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India. Electronic address: sanjee, Mohammed Haris Siddiqui, A B Pant, and Sanjay Yadav.
    • Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India. Electronic address: sana.sarkar13@gmail.com.
    • Neuroscience. 2025 Jan 9; 564: 110125110-125.

    AbstractSH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.Copyright © 2024 International Brain Research Organization (IBRO). Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…