• Neuromodulation · Dec 2024

    Closed-Loop Deep Brain Stimulation Platform for Translational Research.

    • Yan Li, Yingnan Nie, Xiao Li, Xi Cheng, Guanyu Zhu, Jianguo Zhang, Zhaoyu Quan, and Shouyan Wang.
    • Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China.
    • Neuromodulation. 2024 Dec 14.

    ObjectiveThis study aims to facilitate the translation of innovative closed-loop deep brain stimulation (DBS) strategies from theory to practice by establishing a research platform. The platform addresses the challenges of real-time stimulation artifact removal, low-latency feedback stimulation, and rapid translation from animal to clinical experiments.Materials And MethodsThe platform comprises hardware for neural sensing and stimulation, a closed-loop software framework for real-time data streaming and computation, and an algorithm library for implementing closed-loop DBS strategies. The platform integrates hardware for both animal and clinical research. The closed-loop software framework handles the entire closed-loop stimulation, including data streaming, stimulation artifact removal, preprocessing, a closed-loop stimulation strategy, and stimulation control. It provides a unified programming interface for both C/C++ and Python, enabling secondary development to integrate new closed-loop stimulation strategies. Additionally, the platform includes an algorithm library with signal processing and machine learning methods to facilitate the development of new closed-loop DBS strategies.ResultsThe platform can achieve low-latency feedback stimulation control with response times of 6.23 ± 0.85 ms and 6.95 ± 1.11 ms for animal and clinical experiments, respectively. It effectively removed stimulation artifacts and demonstrated flexibility in implementing new closed-loop DBS algorithms. The platform has integrated several typical closed-loop protocols, including threshold-adaptive DBS, amplitude-modulation DBS, dual-threshold DBS and neural state-dependent DBS.ConclusionsThis work provides a research tool for rapidly deploying innovative closed-loop strategies for translational research in both animal and clinical studies. The platform's capabilities in real-time data processing and low-latency control represent a significant advancement in translational DBS research, with potential implications for the development of more effective therapeutic interventions.Copyright © 2024 International Neuromodulation Society. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.