• Neuroscience · Dec 2024

    Review

    Virtual reality modulating dynamics of neuroplasticity: Innovations in neuro-motor rehabilitation.

    • Nitu L Wankhede, Sushruta Koppula, Suhas Bhalla, Hardik Doshi, Rohit Kumawat, SSrinadh Raju, Isha Arora, Shivkumar S Sammeta, Mohammad Khalid, Ameeduzzafar Zafar, Brijesh G Taksande, Aman B Upaganlawar, Monica Gulati, Milind J Umekar, Spandana Rajendra Kopalli, and Mayur B Kale.
    • Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
    • Neuroscience. 2024 Dec 23.

    AbstractVirtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders. This comprehensive review delves into the therapeutic applications of VR, focusing on its role in addressing multiple conditions such as stroke, traumatic brain injuries, phobias, and post-traumatic stress disorder. It highlights how VR can enhance motor recovery, cognitive rehabilitation, and emotional resilience, showcasing its potential as an innovative and effective tool in neurological rehabilitation. Integrating molecular neuroscience with VR technology allows for a deeper understanding of the molecular mechanisms underlying neuroplasticity, opening doors to personalized interventions and precise treatment strategies for individuals with neurological impairments. Moreover, the review emphasizes the ethical considerations and challenges that come with implementing VR-based interventions in clinical practice, stressing the importance of data privacy, informed consent, and collaborative interdisciplinary efforts. By leveraging advanced molecular imaging techniques, VR-based research methodologies, and computational modelling, the review envisions a future where VR technology plays a central role in revolutionizing neuroscience research and clinical neurorehabilitation, ultimately providing tailored and impactful solutions for individuals facing neurological challenges.Copyright © 2024. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.