-
- Zitong Guo, Geng Qian, Xietian Pan, Yuting Zou, Si Chen, Qinglei Zhu, and Zhengju Chen.
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, China.
- Int J Med Sci. 2025 Jan 1; 22 (1): 445244-52.
AbstractBackground: Myocardial injury is prone to occur during myocardial ischemia-reperfusion, which further causes adverse cardiac events. Cardiomyopeptide (CMP) has been found to protect the heart against ischemia-reperfusion injury. The present study will explore the molecular and signaling mechanisms associated with the therapeutic effects of CMP. Methods: In this study, the rat myocardial ischemia-reperfusion model was constructed, the pathological changes of myocardial tissues were observed via hematoxylin-eosin (H&E) and Masson staining, and the levels of myocardial injury markers (AST, Mb, TnT) were detected by ELISA. Myocardial tissues of rats in each group were analyzed using transcriptome sequencing (RNA-seq), and the obtained gene expression profiles were analyzed differentially to determine differentially expressed genes (DEGs). In addition, the signaling pathway related to CMP therapy was found by gene set enrichment analysis (GSEA), and PPARγ was detected by qRT-PCR, WB, and IHC staining. The mitochondrial function of myocardial tissues was detected by mitochondrial respiratory chain activity, JC-1, and reactive oxygen species (ROS). Results: Animal assays showed that CMP could significantly improve myocardial injury and reduce the levels of AST, MB and cTnT. RNA-seq analysis results showed that PPARγ signaling pathway is a potential signaling pathway for CMP treatment of myocardial injury in rats. The experimental results showed that CMP can significantly up-regulate PPARγ expression in myocardial tissues, inhibit ischemia reperfusion-induced myocardial injury, and alleviate mitochondrial respiratory disorders. Conclusion: CMP can improve myocardial injury in rats by alleviating mitochondrial respiratory dysfunction and reducing myocardial tissue damage and inflammatory infiltration via the regulation of PPARγ signaling pathway.© The author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.