• Conf Proc IEEE Eng Med Biol Soc · Jan 2008

    Predict the neurological recovery under hypothermia after cardiac arrest using C0 complexity measure of EEG signals.

    • Yueli Lu, Dineng Jiang, Xiaofeng Jia, Yihong Qiu, Yisheng Zhu, Nitish Thakor, and Shanbao Tong.
    • Conf Proc IEEE Eng Med Biol Soc. 2008 Jan 1;2008:2133-6.

    AbstractClinical trials have proven the efficacy of therapeutic hypothermia in improving the functional outcome after cardiac arrest (CA) compared with the normothermic controls. Experimental researches also demonstrated quantitative electroencephalogram (qEEG) analysis was associated with the long-term outcome of the therapeutic hypothermia in brain injury. Nevertheless, qEEG has not been able to provide a prediction earlier than 6h after the return of spontaneous circulation (ROSC). In this study, we use C0 complexity to analyze the nonlinear characteristic of EEG, which could predict the neurological recovery under therapeutic hypothermia during the early phase after asphyxial cardiac arrest in rats. Twelve Wistar rats were randomly assigned to 9-min asphyxia injury under hypothermia (33 degrees C, n=6) or normothermia (37 degrees C, n=6). Significantly greater C0 complexity was found in hypothermic group than that in normothermic group as early as 4h after the ROSC (P0.05). C0 complexity at 4h correlated well with the 72h neurodeficit score (NDS) (Pearson's correlation = 0.882). The results showed that the C0 complexity could be an early predictor of the long-term neurological recovery from cardiac arrest.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…