• J. Neurosci. · Feb 2003

    Postsynaptic application of a peptide inhibitor of cAMP-dependent protein kinase blocks expression of long-lasting synaptic potentiation in hippocampal neurons.

    • Steven N Duffy and Peter V Nguyen.
    • Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta, T6G 2H7, Canada.
    • J. Neurosci. 2003 Feb 15;23(4):1142-50.

    AbstractMultiple trains of high-frequency synaptic stimulation evoke long-term potentiation (LTP) of synaptic transmission in hippocampal area CA1, which has been correlated with hippocampal long-term memory and requires the activation of cAMP-dependent protein kinase (PKA). To assess whether postsynaptic PKA is necessary for the expression of LTP, we made prolonged whole-cell voltage-clamp recordings from CA1 pyramidal neurons in mouse hippocampal slices during postsynaptic infusion of cell-impermeant modulators of PKA. Repeated stimulation (four 100 Hz trains at 5 min intervals) of the Schaffer collateral pathway increased synaptically evoked EPSCs for up to 2 hr. The postsynaptic infusion of either a cell-permeant PKA inhibitor (Rp-cAMPS) or a cell-impermeant PKA inhibitor (PKI(6-22)) did not alter post-tetanic peak potentiation, but it caused significant decay of EPSCs to pretetanization amplitudes within 1.5 hr. In contrast, postsynaptic infusion of PKI(6-22) did not alter a more modest, decaying form of LTP evoked by a single 100 Hz train. Paired-pulse facilitation was unchanged during most of the duration of LTP, suggesting that postsynaptic mechanisms, including PKA activation, are involved in the expression of LTP induced by multitrain stimulation. The postsynaptic infusion of a constitutively active isoform of the PKA catalytic subunit (Calpha) into CA1 pyramidal neurons increased EPSC sizes to elicit long-lasting synaptic facilitation. Thus, mimicking the activation of PKA in postsynaptic CA1 pyramidal neurons is sufficient for inducing persistent synaptic facilitation. Activation of apostsynaptic PKA is necessary for the expression of LTP in CA1 pyramidal neurons and is sufficient for initiating persistent synaptic facilitation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.