The Journal of neuroscience : the official journal of the Society for Neuroscience
-
Neuropathic pain is a common and often incapacitating clinical problem for which little useful therapy is presently available. Painful peripheral neuropathies can have many etiologies, among which are trauma, viral infections, exposure to radiation or chemotherapy, and metabolic or autoimmune diseases. Sufferers generally experience both pain at rest and exaggerated, painful sensitivity to light touch. ⋯ Nerve injury markedly increases pacemaker currents in large-diameter dorsal root ganglion neurons and results in pacemaker-driven spontaneous action potentials in the ligated nerve. Pharmacological blockade of HCN activity using the specific inhibitor ZD7288 reverses abnormal hypersensitivity to light touch and decreases the firing frequency of ectopic discharges originating in Abeta and Adelta fibers by 90 and 40%, respectively, without conduction blockade. These findings suggest novel insights into the molecular basis of pain and the possibility of new, specific, effective pharmacological therapies.
-
Multiple trains of high-frequency synaptic stimulation evoke long-term potentiation (LTP) of synaptic transmission in hippocampal area CA1, which has been correlated with hippocampal long-term memory and requires the activation of cAMP-dependent protein kinase (PKA). To assess whether postsynaptic PKA is necessary for the expression of LTP, we made prolonged whole-cell voltage-clamp recordings from CA1 pyramidal neurons in mouse hippocampal slices during postsynaptic infusion of cell-impermeant modulators of PKA. Repeated stimulation (four 100 Hz trains at 5 min intervals) of the Schaffer collateral pathway increased synaptically evoked EPSCs for up to 2 hr. ⋯ The postsynaptic infusion of a constitutively active isoform of the PKA catalytic subunit (Calpha) into CA1 pyramidal neurons increased EPSC sizes to elicit long-lasting synaptic facilitation. Thus, mimicking the activation of PKA in postsynaptic CA1 pyramidal neurons is sufficient for inducing persistent synaptic facilitation. Activation of apostsynaptic PKA is necessary for the expression of LTP in CA1 pyramidal neurons and is sufficient for initiating persistent synaptic facilitation.
-
Alterations in the corticostriatal pathway may precede symptomatology and striatal cell death in Huntington's disease (HD) patients. Here we examined spontaneous EPSCs in striatal medium-sized spiny neurons in slices from a mouse model of HD (R6/2). Spontaneous EPSC frequency was similar in young (3-4 weeks) transgenics and controls but decreased significantly in transgenics when overt behavioral symptoms began (5-7 weeks) and was most pronounced in severely impaired transgenics (11-15 weeks). ⋯ Riluzole, a compound that decreases glutamate release, reduced these events. Together, these observations indicate that both progressive and transient alterations occur along the corticostriatal pathway in experimental HD. These alterations are likely to contribute to the selective vulnerability of striatal medium-sized spiny neurons.
-
Recently it was demonstrated that exposure of the developing brain during the period of synaptogenesis to drugs that block NMDA glutamate receptors or drugs that potentiate GABA(A) receptors can trigger widespread apoptotic neurodegeneration. All currently used general anesthetic agents have either NMDA receptor-blocking or GABA(A) receptor-enhancing properties. ⋯ Therefore, the question arises whether this practice entails significant risk of inducing apoptotic neurodegeneration in the developing human brain. To begin to address this problem, we have administered to 7-d-old infant rats a combination of drugs commonly used in pediatric anesthesia (midazolam, nitrous oxide, and isoflurane) in doses sufficient to maintain a surgical plane of anesthesia for 6 hr, and have observed that this causes widespread apoptotic neurodegeneration in the developing brain, deficits in hippocampal synaptic function, and persistent memory/learning impairments.
-
Mirror-image allodynia is a mysterious phenomenon that occurs in association with many clinical pain syndromes. Allodynia refers to pain in response to light touch/pressure stimuli, which normally are perceived as innocuous. Mirror-image allodynia arises from the healthy body region contralateral to the actual site of trauma/inflammation. ⋯ The present studies demonstrate that both ipsilateral and mirror-image SIN-induced allodynias are (1) reversed by intrathecal (peri-spinal) delivery of fluorocitrate, a glial metabolic inhibitor; (2) prevented and reversed by intrathecal CNI-1493, an inhibitor of p38 mitogen-activated kinases implicated in proinflammatory cytokine production and signaling; and (3) prevented or reversed by intrathecal proinflammatory cytokine antagonists specific for interleukin-1, tumor necrosis factor, or interleukin-6. Reversal of ipsilateral and mirror-image allodynias was rapid and complete even when SIN was maintained constantly for 2 weeks before proinflammatory cytokine antagonist administration. These results provide the first evidence that ipsilateral and mirror-image inflammatory neuropathy pain are created both acutely and chronically through glial and proinflammatory cytokine actions.