• J. Neurophysiol. · Apr 2010

    Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.

    • François D Roy, Jaynie F Yang, and Monica A Gorassini.
    • Department of Biomedical Engineering, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada.
    • J. Neurophysiol. 2010 Apr 1;103(4):2222-33.

    AbstractAn incomplete spinal cord injury (SCI) impairs neural conduction along spared ascending sensory pathways to disrupt the control of residual motor movements. To characterize how SCI affects the activation of the motor cortex by spared ascending sensory pathways, we examined how stimulation of leg afferents facilitates the excitability of the motor cortex in subjects with incomplete SCI. Homo- and heteronymous afferents to the tibialis anterior (TA) representation in the motor cortex were electrically stimulated, and the responses were compared with uninjured controls. In addition, we examined if cortical excitability could be transiently increased by repetitively pairing stimulation of spared ascending sensory pathways with transcranial magnetic stimulation (TMS), an intervention termed paired associative stimulation (PAS). In uninjured subjects, activating the tibial nerve at the ankle 45-50 ms before a TMS pulse in a conditioning-test paradigm facilitated the motor-evoked potential (MEP) in the heteronymous TA muscle by twofold on average. In contrast, prior tibial nerve stimulation did not facilitate the TA MEP in individuals with incomplete SCI (n = 8 SCI subjects), even in subjects with less severe injuries. However, we provide evidence that ascending sensory inputs from the homonymous common peroneal nerve (CPN) can, unlike the heteronymous pathways, facilitate the motor cortex to modulate the TA MEP (n = 16 SCI subjects) but only in subjects with less severe injuries. Finally, by repetitively coupling CPN stimulation with coincident TA motor cortex activation during PAS, we show that 7 of 13 SCI subjects produced appreciable (>20%) facilitation of the MEP following the intervention. The increase in corticospinal tract excitability by PAS was transient (<20 min) and tended to be more prevalent in SCI subjects with stronger functional ascending sensory pathways.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.