• AJR Am J Roentgenol · Apr 2010

    Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning.

    • Jodie A Christner, James M Kofler, and Cynthia H McCollough.
    • Mayo Clinic Rochester, 200 First St, SW, Rochester, MN 55905, USA.
    • AJR Am J Roentgenol. 2010 Apr 1;194(4):881-9.

    ObjectiveThe objective of our study was to compare dose-length product (DLP)-based estimates of effective dose with organ dose-based calculations using tissue-weighting factors from publication 103 of the International Commission on Radiological Protection (ICRP) or dual-energy CT protocols.Materials And MethodsUsing scanner- and energy-dependent organ dose coefficients, we calculated effective doses for CT examinations of the head, chest, coronary arteries, liver, and abdomen and pelvis using routine clinical single- or dual-energy protocols and tissue-weighting factors published in 1991 in ICRP publication 60 and in 2007 in ICRP publication 103. Effective doses were also generated from the respective DLPs using published conversion coefficients that depend only on body region. For each examination type, the same volume CT dose index was used for single- and dual-energy scans.ResultsEffective doses calculated for CT examinations using organ dose estimates and ICRP 103 tissue-weighting factors differed relative to ICRP 60 values by -39% (-0.5 mSv, head), 14% (1 mSv, chest), 36% (4 mSv, coronary artery), 4% (0.6 mSv, liver), and -7% (-1 mSv, abdomen and pelvis). DLP-based estimates of effective dose, which were derived using ICRP 60-based conversion coefficients, were less than organ dose-based estimates for ICRP 60 by 4% (head), 23% (chest), 37% (coronary artery), 12% (liver), and 19% (abdomen and pelvis) and for ICRP 103 by -34% (head), 37% (chest), 74% (coronary artery), 16% (liver), and 12% (abdomen and pelvis). All results were energy independent.ConclusionThese differences in estimates of effective dose suggest the need to reassess DLP to E conversion coefficients when adopting ICRP 103, particularly for scans over the breast. For the evaluated scanner, DLP to E conversion coefficients were energy independent, but ICRP 60-based conversion coefficients underestimated effective dose relative to organ dose-based calculations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…