-
Physiological measurement · Nov 2011
Respiratory rate extraction from pulse oximeter and electrocardiographic recordings.
- Jinseok Lee, John P Florian, and Ki H Chon.
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA. jinseok@wpi.edu
- Physiol Meas. 2011 Nov 1;32(11):1763-73.
AbstractWe present an algorithm of respiratory rate extraction using particle filter (PF), which is applicable to both photoplethysmogram (PPG) and electrocardiogram (ECG) signals. For the respiratory rate estimation, 1 min data are analyzed with combination of a PF method and an autoregressive model where among the resultant coefficients, the corresponding pole angle with the highest magnitude is searched since this reflects the closest approximation of the true breathing rate. The PPG data were collected from 15 subjects with the metronome breathing rate ranging from 24 to 36 breaths per minute in the supine and upright positions. The ECG data were collected from 11 subjects with spontaneous breathing ranging from 36 to 60 breaths per minute during treadmill exercises. Our method was able to accurately extract respiratory rates for both metronome and spontaneous breathing even during strenuous exercises. More importantly, despite slow increases in breathing rates concomitant with greater exercise vigor with time, our method was able to accurately track these progressive increases in respiratory rates. We quantified the accuracy of our method by using the mean, standard deviation and interquartile range of the error rates which all reflected high accuracy in estimating the true breathing rates. We are not aware of any other algorithms that are able to provide accurate respiratory rates directly from either ECG signals or PPG signals with spontaneous breathing during strenuous exercises. Our method is near real-time realizable because the computational time on 1 min data segment takes only 10 ms on a 2.66 GHz Intel Core2 microprocessor; the data are subsequently shifted every 10 s to obtain near-continuous breathing rates. This is an attractive feature since most other techniques require offline data analyses to estimate breathing rates.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.