• Annals of neurology · Aug 2011

    Targeting the p53 pathway to protect the neonatal ischemic brain.

    • Cora H Nijboer, Cobi J Heijnen, Michael A van der Kooij, Jitske Zijlstra, Cindy T J van Velthoven, Carsten Culmsee, Frank van Bel, Henrik Hagberg, and Annemieke Kavelaars.
    • Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands.
    • Ann. Neurol. 2011 Aug 1;70(2):255-64.

    ObjectiveTo investigate whether inhibition of mitochondrial p53 association using pifithrin-μ (PFT-μ) represents a potential novel neuroprotective strategy to combat perinatal hypoxic-ischemic (HI) brain damage.MethodsSeven-day-old rats were subjected to unilateral carotid artery occlusion and hypoxia followed by intraperitoneal treatment with PFT-μ, an inhibitor of p53 mitochondrial association or PFT-α an inhibitor of p53 transcriptional activity. Cerebral damage, sensorimotor and cognitive function, apoptotic pathways (cytosolic cytochrome c, Smac/DIABLO, active caspase 3), and oxidative stress (lipid peroxidation and PARP-1 cleavage) were investigated.ResultsPFT-μ treatment completely prevented the HI-induced increase in mitochondrial p53 association at 3 hours and reduced neuronal damage at 48 hours post-HI. PFT-μ had long-term (6-10 weeks post-HI) beneficial effects as sensorimotor and cognitive outcome improved and infarct size was reduced by ~79%. Neuroprotection by PFT-μ treatment was associated with strong inhibition of apoptotic pathways and reduced oxidative stress. Unexpectedly, PFT-μ also inhibited HI-induced upregulation of p53 target genes. However, the neuroprotective effect of inhibiting only p53 transcriptional activity by PFT-α was significantly smaller and did not involve reduced oxidative stress.InterpretationWe are the first to show that prevention of mitochondrial p53 association by PFT-μ strongly improves functional outcome and decreases lesion size after neonatal HI. PFT-μ not only inhibits mitochondrial release of cytochrome c, but also inhibits oxidative stress. We propose that as a consequence nuclear accumulation of p53 and transcription of proapoptotic target genes are prevented. In conclusion, targeting p53 mitochondrial association by PFT-μ may develop into a novel and powerful neuroprotective strategy.Copyright © 2011 American Neurological Association.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…