• Acta Anaesthesiol Scand · May 2002

    Clinical Trial

    Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis.

    • K Møller, G I Strauss, G Thomsen, F S Larsen, S Holm, B K Sperling, P Skinhøj, and G M Knudsen.
    • Department of Infectious Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark. kirsten.moller@dadlnet.dk
    • Acta Anaesthesiol Scand. 2002 May 1;46(5):567-78.

    BackgroundThe optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates (CMR) of oxygen (O(2)), glucose (glu), and lactate (lac), in patients with ABM and compare the results to those obtained in healthy volunteers.MethodsWe studied 19 patients (17 of whom were sedated) with ABM and eight healthy volunteers (controls). CBF was measured during baseline ventilation and hyperventilation with single-photon emission computed tomography (SPECT) (14 patients) and/or the Kety-Schmidt technique (KS) (11 patients and all controls). In KS studies, CMR was measured by multiplying the arterial to jugular venous concentration difference (a-v D) by CBF.ResultsCBF did not differ significantly among groups, although a larger variation was seen in patients than in controls. CO(2)R was not significantly different among groups. At baseline, patients had significantly lower a-v DO(2), CMR(O(2)), CMR(glu), and CMR(lac) than controls. CMR(O(2)) did not change between hyperventilation compared to baseline ventilation, whereas CMR(glu) increased.ConclusionIn patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients, a ventilation strategy guided by jugular bulb oximetry and/or repeated CBF measurements may be more optimal in terms of cerebral oxygenation than a strategy aiming at identical levels of P(a)CO(2) for all patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.