• J. Neurophysiol. · Apr 2013

    Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation.

    • Jeremy W Chopek, Christopher W MacDonell, Kevin E Power, Kalan Gardiner, and Phillip F Gardiner.
    • Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.
    • J. Neurophysiol. 2013 Apr 1;109(8):2056-63.

    AbstractThe purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves (P < 0.05). In the spinalized preparation, the MSR was significantly increased in both the tibial and peroneal nerves with the latter increasing more than the former (5.7 vs. 3.6 times; P < 0.05). Intracellular motoneuron experiments demonstrated that rheobase decreased, while input resistance, afterhyperpolarization amplitude, and the firing rate at a given current injection increased in motoneurons following quipazine administration with no differences between extensor and flexor motoneurons. Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.