• Resp Care · Feb 2001

    Review

    Ventilator-induced lung injury and the evolution of lung-protective strategies in acute respiratory distress syndrome.

    • M A Gillette and D R Hess.
    • Pulmonary and Critical Care Unit, Bullfinch 148, Massachusetts General Hospital, 55 Fruit Street, Boston MA 02114-2696, USA. mgillette1@partners.org
    • Resp Care. 2001 Feb 1;46(2):130-48.

    AbstractTraditional ventilator management of acute respiratory distress syndrome (ARDS), emphasizing normalization of blood gases, promoted high rates of conventional barotrauma. Research revealed a broader range of ventilator-induced lung injury, physiologically and histopathologically indistinguishable from ARDS itself. It is now known that overdistention and cyclic inflation of injured lung can exacerbate lung injury and probably promote systemic inflammation, effects minimized by low tidal volumes/plateau pressures and by application of positive end-expiratory pressure. No compelling data suggest a safe interval for nonprotective ventilation in humans; historically defined "low" tidal volumes may remain excessive for certain patients. Protective ventilation, however, entails carbon dioxide accumulation ("permissive hypercapnia"). Despite extensive study, debate remains, even over whether consequent respiratory acidosis is harmful, tolerable with physiologic adaptation, or intrinsically adaptive. Its gross systemic effects seem generally tolerated by critically ill patients; however, subsets, including those with ischemic heart disease, left or right heart failure, pulmonary hypertension, or cranial injury, may be at higher risk. In controlled trials demonstrating mortality benefit from lung-protective ventilation, acidosis was more tightly controlled than in negative studies. Decreased acidosis-associated dyspnea probably explains reduced use of sedatives and paralytics noted in those trials. There may thus be disparate goals in ARDS management: rapid institution of a restrictive ventilatory strategy, and avoidance of significant acidosis. We review data pertaining to ARDS physiology, ventilator-induced lung injury, lung-protective ventilatory strategies, and the physiology of respiratory acidosis. Tracheal gas insufflation is considered as a means to reconcile the clinical goals of ventilatory reduction and control of acidosis.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…