• Neuroscience · Dec 2015

    Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.

    • P Rangarajan, A Karthikeyan, J Lu, E-A Ling, and S T Dheen.
    • Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
    • Neuroscience. 2015 Dec 17; 311: 398-414.

    AbstractMicroglia are the prime cellular sources of reactive oxygen species (ROS) in the central nervous system (CNS). Chronic activation of microglia has been linked to aging-associated neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) since they produce excessive amounts of ROS for a prolonged duration leading to oxidative stress. The present study was aimed at investigating the expression and role of Sirtuin 3 (Sirt3), a protein deacetylase which is implicated in regulating cellular ROS levels. It has been shown that Sirt3 reduces cellular ROS levels by deacetylating forkhead box O 3a (Foxo3a), a transcription factor which transactivates antioxidant genes, catalase (Cat) and manganese superoxide dismutase (mnSod). In the present study, Sirt3 immunoreactivity was localized in the ameboid microglial cells distributed in the corpus callosum (CC) of the early postnatal rat brain and diminished in the ramified microglial cells in the CC of the adult rat brain. A marked induction of Sirt3 expression was seen in lipopolysaccharide (LPS)-activated microglia in vivo and in vitro as well as in adult rat brains subjected to traumatic brain injury (TBI). Knockdown of Sirt3 in microglia led to an increase in the cellular and mitochondrial ROS and decrease in the expression of antioxidant, mnSod which is indicative of the function of Sirt3 in ROS regulation in microglia. Conversely, Sirt3 overexpression led to increase in the expression of antioxidants Cat and mnSod. Further, increase in the expression and nuclear translocation of Foxo3a was observed following Sirt3 overexpression, suggesting that Sirt3 regulates ROS by inducing the expression of antioxidants via activation of Foxo3a. The above results point to an antioxidant defense mechanism presented by Sirt3 through the activation of Foxo3a, in microglia. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…