-
- Stacy J Suskauer, Daniel J Simmonds, Sunaina Fotedar, Joanna G Blankner, James J Pekar, Martha B Denckla, and Stewart H Mostofsky.
- Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA.
- J Cogn Neurosci. 2008 Mar 1;20(3):478-93.
AbstractImpaired response inhibition is thought to be a core deficit in attention deficit hyperactivity disorder (ADHD). Prior imaging studies investigating response inhibition in children with ADHD have used tasks involving different cognitive resources, thereby complicating the interpretation of their findings. In this study, a classical go/no-go task with a well-ingrained stimulus-response association (green = go; red = no-go) was used in order to minimize extraneous cognitive demands. Twenty-five children with ADHD and 25 typically developing (TD) children between the ages of 8 and 13 years and group-matched for IQ and performance on the go/no-go task were studied using event-related functional magnetic resonance imaging (fMRI). Analyses were used to examine differences in activation between the ADHD and TD groups for "go" (habitual motor response) and "no-go" (requiring inhibition of the motor response) events. Region-of-interest analyses revealed no between-group difference in activation in association with "go" events. For "no-go" events, the children with ADHD demonstrated significantly less activation than did TD controls within a network important for inhibiting a motor response to a visual stimulus, with frontal differences localized to the pre-supplementary motor area. Although blood oxygenation level-dependent fMRI data show no differences between children with ADHD and TD children in association with a habituated motor "go" response, during "no-go" events, which require selecting not to respond, children with ADHD show diminished recruitment of networks important for response inhibition. The findings suggest that abnormalities in circuits important for motor response selection contribute to deficits in response inhibition in children with ADHD and lend support to the growing awareness of ADHD-associated anomalies in medial frontal regions important for the control of voluntary actions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.