• NeuroImage · May 2006

    Characterization of displaced white matter by brain tumors using combined DTI and fMRI.

    • Tom Schonberg, Pazit Pianka, Talma Hendler, Ofer Pasternak, and Yaniv Assaf.
    • Department of Psychology, Tel Aviv University, Tel Aviv, Israel.
    • Neuroimage. 2006 May 1;30(4):1100-11.

    AbstractIn vivo white matter tractography by diffusion tensor imaging (DTI) has become a popular tool for investigation of white matter architecture in the normal brain. Despite some unresolved issues regarding the accuracy of DTI, recent studies applied DTI for delineating white matter organization in the vicinity of brain lesions and especially brain tumors. Apart from the intrinsic limitations of DTI, the tracking of fibers in the vicinity or within lesions is further complicated due to changes in diseased tissue such as elevated water content (edema), tissue compression and degeneration. These changes deform the architecture of the white matter and in some cases prevent definite selection of the seed region of interest (ROI) from which fiber tracking begins. We show here that for displaced fiber systems, the use of anatomical approach for seed ROI selection yields insufficient results. Alternatively, we propose to select the seed points based on functional MRI activations which constrain the subjective seed ROI selection. The results are demonstrated on two major fiber systems: the pyramidal tract and the superior longitudinal fasciculus that connect critical motor and language areas, respectively. The fMRI based seed ROI selection approach enabled a more comprehensive mapping of these fiber systems. Furthermore, this procedure enabled the characterization of displaced white matter using the eigenvalue decomposition of DTI. We show that along the compressed fiber system, the diffusivity parallel to the fiber increases, while that perpendicular to the fibers decreases, leading to an overall increase in the fractional anisotropy index reflecting the compression of the fiber bundle. We conclude that definition of the functional network of a subject with deformed white matter should be done carefully. With fMRI, one can more accurately define the seed ROI for DTI based tractography and to provide a more comprehensive, functionally related, white matter mapping, a very important tool used in pre-surgical mapping.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.