-
Anesthesia and analgesia · Dec 2003
Estimating alveolar dead space from the arterial to end-tidal CO(2) gradient: a modeling analysis.
- Jonathan G Hardman and Alan R Aitkenhead.
- University Department of Anaesthesia, University Hospital, Nottingham, NG7 2UH, UK. j.hardman@nottingham.ac.uk
- Anesth. Analg. 2003 Dec 1;97(6):1846-51.
UnlabelledUsing an original, validated, high-fidelity model of pulmonary physiology, we compared the arterial to end-tidal CO(2) gradient divided by the arterial CO(2) tension (Pa-E'CO(2)/PaCO(2)) with alveolar dead space expressed as a fraction of alveolar tidal volume, calculated in the conventional manner using Fowler's technique and the Bohr equation: (VDalv/VTalv)(Bohr-Fowler). We examined the variability of Pa-E'CO(2)/PaCO(2) and of (VDalv/VTalv)(Bohr-Fowler) in the presence of three ventilation-perfusion defects while varying CO(2) production (Vdot;CO(2)), venous admixture, and anatomical dead space fraction (VDanat). Pa-E'CO(2)/PaCO(2) was approximately 59.5% of (VDalv/VTalv)(Bohr-Fowler). During constant alveolar configuration, the factors examined (Vdot;CO(2), pulmonary shunt fraction, and VDanat) each caused variation in (VDalv/VTalv)(Bohr-Fowler) and in Pa-E'CO(2)/PaCO(2). Induced variation was slightly larger for Pa-E'CO(2)/PaCO(2) during changes in VDanat, but was similar during variation of venous admixture and Vdot;CO(2). Pa-E'CO(2)/PaCO(2) may be a useful serial measurement in the critically ill patient because all the necessary data are easily obtained and calculation is significantly simpler than for (VDalv/VTalv)(Bohr-Fowler).ImplicationsUsing an original, validated, high-fidelity model of pulmonary physiology, we have demonstrated that the arterial to end-tidal carbon dioxide pressure gradient may be used to robustly and accurately quantify alveolar dead space. After clinical validation, its use could replace that of conventionally calculated alveolar dead space fraction, particularly in the critically ill.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.