• Resp Care · Jun 2001

    Comparative Study

    Effects of continuous, expiratory, reverse, and bi-directional tracheal gas insufflation in conjunction with a flow relief valve on delivered tidal volume, total positive end-expiratory pressure, and carbon dioxide elimination: a bench study.

    • E Delgado, B Hete, L A Hoffman, F J Tasota, and M R Pinsky.
    • Respiratory Care Department, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA. delgadoe@msx.upmc.edu.
    • Resp Care. 2001 Jun 1;46(6):577-85.

    IntroductionTracheal gas insufflation (TGI) can increase total positive end-expiratory pressure (total-PEEP) when flow is delivered in a forward direction, necessitating adjustments to maintain total-PEEP constant. When TGI is delivered throughout the respiratory cycle, additional adjustments are needed to maintain tidal volume (V(T)) constant.ObjectiveDetermine if bi-directional TGI (bi-TGI) (simultaneous flows toward the lungs and upper airway) in combination with a flow relief valve eliminates the increase in total-PEEP and maintains a constant V(T), thus simplifying TGI administration.MethodsUsing an artificial lung model and pressure control ventilation, we studied the effect of TGI at 10 L/min on inspired V(T), total-PEEP, and CO(2) elimination during 6 conditions: (1) control (no TGI, no catheter in the airway), (2) baseline (catheter in the airway but no TGI), (3) continuous TGI, (4) expiratory TGI, (5) reverse TGI, and (6) bi-TGI. Each condition was studied under 3 inspiration-expiration ratios (1:1, 1:2, and 2:1). A preset flow relief valve was inserted into the ventilator circuit during all TGI conditions with continuous flow.SettingUniversity research laboratory.ResultsCO(2) elimination efficiency was similar under all conditions. Total-PEEP increased with continuous TGI and expiratory TGI, decreased during reverse TGI, and was unchanged during bi-TGI. With the flow relief valve in place, and no adjustment in mechanical ventilation, the change in minute ventilation ranged from 0% to 10%, with the least change during bi-TGI (0-5%). During bi-TGI, gas flow was equivalent in both directions during dynamic conditions and the flow relief valve consistently removed gas at 10 L/min under various pressures.ConclusionsOur data from an artificial lung model support that continuous bi-TGI minimizes the change in total-PEEP seen during other TGI modalities. The flow relief valve compensated for the extra gas volume delivered by the TGI catheter, thereby eliminating the need to make ventilator adjustments. Used in combination with a flow relief valve, bi-TGI appears to offer unique advantages by providing a simpler method to deliver TGI. Further testing is indicated to determine if similar benefits occur in the clinical setting.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.