• Lasers Surg Med · Jul 2008

    Histological and modeling study of skin thermal injury to 2.0 microm laser irradiation.

    • Bo Chen, Sharon L Thomsen, Robert J Thomas, Jeffrey Oliver, and Ashley J Welch.
    • Biomedical Engineering Laser Laboratory, University of Texas at Austin, Austin, Texas 78712, USA. chenbo@mail.utexas.edu
    • Lasers Surg Med. 2008 Jul 1;40(5):358-70.

    Background And ObjectiveQualitative and quantitative gross histopathologic studies of skin damage were performed at 48 hours after irradiation with a 2.0 microm thulium CW laser to determine the mechanisms of laser effects in the skin under various exposure conditions.Study Design/Materials And MethodsPig skin lesions were created at, below and beyond the threshold irradiation conditions for grossly apparent thermal lesions. Histological sections of these lesions were studied. For each threshold lesion, four quantitative histopathological parameters were measured: the widths of (1) epidermal necrosis at the surface, (2) the outer boundary of the thrombosis zone, (3) the depth of vascular thrombosis, and (4) the depth of perivascular inflammation (increased infiltrates of inflammatory cells) and edema. The quantitative histopathologic data were compared with predictions using an optical-thermal-damage model.ResultsHistologically, the thermal damage mechanisms for grossly apparent threshold lesions of persistent redness at 48 hours included necrosis of the epidermal cells, intravascular thrombosis and perivascular inflammation and edema in dermal blood vessels. At irradiation levels just below 'gross threshold', non-lethal thermal effects, such as perivascular inflammation and edema were found in the histological sections. When the radiation reached about 1.5-2.5 times beyond the threshold, decrease of dermal collagen birefringence was observed.ConclusionsA sequence of damage endpoints was defined in the skin as power increased. By choosing rate process coefficients to match specific mechanisms of lethal thermal damage, the optical-thermal-damage model is capable of predicting various types of thermal injury in the skin, such as epidermal necrosis, vascular thrombosis, and dermal collagen coagulation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.