• Medical care · Apr 2006

    Impact of changing the statistical methodology on hospital and surgeon ranking: the case of the New York State cardiac surgery report card.

    • Laurent G Glance, Andrew Dick, Turner M Osler, Yue Li, and Dana B Mukamel.
    • Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA. Laurent_Glance@urmc.rochester.edu
    • Med Care. 2006 Apr 1;44(4):311-9.

    BackgroundRisk adjustment is central to the generation of health outcome report cards. It is unclear, however, whether risk adjustment should be based on standard logistic regression, fixed-effects or random-effects modeling.ObjectiveThe objective of this study was to determine how robust the New York State (NYS) Coronary Artery Bypass Graft (CABG) Surgery Report Card is to changes in the underlying statistical methodology.MethodsRetrospective cohort study based on data from the NYS Cardiac Surgery Reporting System on all patient undergoing isolated CABG surgery in NYS and who were discharged between 1997 and 1999 (51,750 patients). Using the same risk factors as in the NYS models, fixed-effects and random-effects models were fitted to the NYS data. Quality outliers were identified using 1) the ratio of observed-to-expected mortality rates (O/E ratio) and confidence intervals (CIs) calculated using both parametric (Poisson distribution) and nonparametric (bootstrapping) techniques; and 2) shrinkage estimators.ResultsAt the surgeon level, the standard logistic regression model, the fixed-effects model, and the fixed-effects component of the random-effects model demonstrated near-perfect agreement on the identity of quality outliers using a quality indicator based on the O/E ratio and the Poisson distribution. Shrinkage estimators identified the fewest outliers, whereas the O/E ratios with bootstrap CI identified the greatest number of outliers. The results were similar for hospitals, except that the fixed-effects model identified more outliers than either the NYS model or the fixed-effects component of the random-effects model.ConclusionShrinkage estimators based on random-effects models are slightly more conservative in identifying quality outliers compared with the traditional approach based on fixed-effects modeling and standard regression. Explicitly modeling surgeon provider effect (fixed-effects and random-effects models) did not significantly alter the distribution of quality outliers when compared with standard logistic regression (which does not model provider effect). Compared with the standard parametric approach, the use of a bootstrap approach to construct 95% confidence interval around the O/E ratio resulted in more providers being identified as quality outliers.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.