• Biochim. Biophys. Acta · Jul 2013

    Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin.

    • László Pecze, Walter Blum, and Beat Schwaller.
    • Department of Medicine, University of Fribourg, Fribourg, Switzerland.
    • Biochim. Biophys. Acta. 2013 Jul 1;1833(7):1680-91.

    AbstractTransient receptor potential vanilloid subtype 1 (TRPV1) receptor is a pain-sensing, ligand-gated, non-selective cation channel expressed in peripheral sensory neurons. Prolonged activation of TRPV1 by capsaicin leads to cell swelling and formation of membrane blebs in rat dorsal root ganglion (DRG) neurons. Similar results were obtained in NIH3T3 fibroblast cells stably expressing TRPV1. Here, we assessed the contribution of Ca(2+) and Na(+) ions to TRPV1-mediated changes. Cell swelling was caused by a substantial influx of extracellular Na(+) via TRPV1 channels, causing concomitant transport of water. In the absence of extracellular Na(+), the membrane blebbing was completely inhibited, but Ca(2+) influx did not change under these conditions. Na(+) influx was modulated by the intracellular Ca(2+) concentration ([Ca(2+)]i). Elevation of [Ca(2+)]i by ionomycin sensitized/activated TRPV1 channels causing cell swelling in TRPV1-positive cells. In the absence of extracellular Ca(2+), capsaicin caused only little increase in [Ca(2+)]i indicating that the increase in [Ca(2+)]i observed after capsaicin application is derived essentially from extracellular Ca(2+) and not from internal Ca(2+) stores. In the absence of extracellular Ca(2+) also the process of cell swelling was considerably slower. Calretinin is a Ca(2+) buffer protein, which is expressed in a subset of TRPV1-positive neurons. Calretinin decreased the amplitude, but slowed down the decay of Ca(2+) signals evoked by ionomycin. Cells co-expressing TRPV1 and calretinin were less sensitive to TRPV1-mediated, capsaicin-induced volume increases. In TRPV1-expressing NIH3T3 cells, calretinin decreased the capsaicin-induced Ca(2+) and Na(+) influx. Swelling and formation of membrane blebs resulted in impaired plasma membrane integrity finally leading to cell death. Our results hint towards a mechanistic explanation for the apoptosis-independent capsaicin-evoked neuronal loss and additionally reveal a protective effect of calretinin; we propose that the Ca(2+)-buffering capacity of calretinin reduces the susceptibility of calretinin-expressing DRG neurons against cell swelling/death caused by overstimulation of TRPV1 channels. This article is part of a Special Issue entitled:12th European Symposium on Calcium.Copyright © 2012 Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.