• NeuroImage · Nov 2010

    Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain.

    • Peter Stanwell, Philip Siddall, Nirmal Keshava, Daniel Cocuzzo, Saadallah Ramadan, Alexander Lin, David Herbert, Ashley Craig, Yvonne Tran, James Middleton, Shiva Gautam, Michael Cousins, and Carolyn Mountford.
    • Centre for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02215, USA.
    • Neuroimage. 2010 Nov 1;53(2):544-52.

    AbstractSpinal cord injury (SCI) can be accompanied by chronic pain, the mechanisms for which are poorly understood. Here we report that magnetic resonance spectroscopy measurements from the brain, collected at 3T, and processed using wavelet-based feature extraction and classification algorithms, can identify biochemical changes that distinguish control subjects from subjects with SCI as well as subdividing the SCI group into those with and without chronic pain. The results from control subjects (n=10) were compared to those with SCI (n=10). The SCI cohort was made up of subjects with chronic neuropathic pain (n=5) and those without chronic pain (n=5). The wavelet-based decomposition of frequency domain MRS signals employs statistical significance testing to identify features best suited to discriminate different classes. Moreover, the features benefit from careful attention to the post-processing of the spectroscopy data prior to the comparison of the three cohorts. The spectroscopy data, from the thalamus, best distinguished control subjects without SCI from those with SCI with a sensitivity and specificity of 0.9 (Percentage of Correct Classification). The spectroscopy data obtained from the prefrontal cortex and anterior cingulate cortex both distinguished between SCI subjects with chronic neuropathic pain and those without pain with a sensitivity and specificity of 1.0. In this study, where two underlying mechanisms co-exist (i.e. SCI and pain), the thalamic changes appear to be linked more strongly to SCI, while the anterior cingulate cortex and prefrontal cortex changes appear to be specifically linked to the presence of pain.Copyright 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.