• Eur Spine J · Sep 2009

    In vitro study of accuracy of cervical pedicle screw insertion using an electronic conductivity device (ATPS part III).

    • Heiko Koller, Wolfgang Hitzl, Frank Acosta, Mark Tauber, Juliane Zenner, Herbert Resch, Yasutsugu Yukawa, Oliver Meier, Rene Schmidt, and Michael Mayer.
    • Department for Traumatology and Sport Injuries, Paracelsus Medical University Salzburg, Salzburg, Austria. heiko.koller@t-online.de
    • Eur Spine J. 2009 Sep 1; 18 (9): 130013131300-13.

    AbstractReconstruction of the highly unstable, anteriorly decompressed cervical spine poses biomechanical challenges to current stabilization strategies, including circumferential instrumented fusion, to prevent failure. To avoid secondary posterior surgery, particularly in the elderly population, while increasing primary construct rigidity of anterior-only reconstructions, the authors introduced the concept of anterior transpedicular screw (ATPS) fixation and plating. We demonstrated its morphological feasibility, its superior biomechanical pull-out characteristics compared with vertebral body screws and the accuracy of inserting ATPS using a manual fluoroscopically assisted technique. Although accuracy was high, showing non-critical breaches in the axial and sagittal plane in 78 and 96%, further research was indicated refining technique and increasing accuracy. In light of first clinical case series, the authors analyzed the impact of using an electronic conductivity device (ECD, PediGuard) on the accuracy of ATPS insertion. As there exist only experiences in thoracolumbar surgery the versatility of the ECD was also assessed for posterior cervical pedicle screw fixation (pCPS). 30 ATPS and 30 pCPS were inserted alternately into the C3-T1 vertebra of five fresh-frozen specimen. Fluoroscopic assistance was only used for the entry point selection, pedicle tract preparation was done using the ECD. Preoperative CT scans were assessed for sclerosis at the pedicle entrance or core, and vertebrae with dense pedicles were excluded. Pre- and postoperative reconstructed CT scans were analyzed for pedicle screw positions according to a previously established grading system. Statistical analysis revealed an astonishingly high accuracy for the ATPS group with no critical screw position (0%) in axial or sagittal plane. In the pCPS group, 88.9% of screws inserted showed non-critical screw position, while 11.1% showed critical pedicle perforations. The usage of an ECD for posterior and anterior pedicle screw tract preparation with the exclusion of dense cortical pedicles was shown to be a successful and clinically sound concept with high-accuracy rates for ATPS and pCPS. In concert with fluoroscopic guidance and pedicle axis views, application of an ECD and exclusion of dense cortical pedicles might increase comfort and safety with the clinical use of pCPS. In addition, we presented a reasonable laboratory setting for the clinical introduction of an ATPS-plate system.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.