• J. Neurophysiol. · Feb 2003

    The effects of digital anesthesia on force control using a precision grip.

    • Joël Monzée, Yves Lamarre, and Allan M Smith.
    • Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Université de Montréal, Montreal, Quebec H3C 3T8, Canada.
    • J. Neurophysiol. 2003 Feb 1;89(2):672-83.

    AbstractA total of 20 right-handed subjects were asked to perform a grasp-lift-and-hold task using a precision grip. The grasped object was a one-degree-of-freedom manipuladum consisting of a vertically mounted linear motor capable of generating resistive forces to simulate a range of object weights. In the initial study, seven subjects (6 women, 1 man; ages 24-56 yr) were first asked to lift and hold the object stationary for 4 s. The object presented a metal tab with two different surface textures and offered one of four resistive forces (0.5, 1.0, 1.5, and 2.0 N). The lifts were performed both with and without visual feedback. Next, the subjects were asked to perform the same grasping sequence again after ring block anesthesia of the thumb and index finger with mepivacaine. The objective was to determine the degree to which an internal model obtained through prior familiarity might compensate for the loss of cutaneous sensation. In agreement with previous studies, it was found that all subjects applied significantly greater grip force after digital anesthesia, and the coordination between grip and load forces was disrupted. It appears from these data, that the internal model alone is insufficient to completely compensate for the loss of cutaneous sensation. Moreover, the results suggest that the internal model must have either continuous tonic excitation from cutaneous receptors or at least frequent intermittent reiteration to function optimally. A subsequent study performed with 10 additional subjects (9 women, 1 man; ages 24-49 yr) indicated that with unimpaired cutaneous feedback, the grasping and lifting forces were applied together with negligible forces and torques in other directions. In contrast, after digital anesthesia, significant additional linear and torsional forces appeared, particularly in the horizontal and frontal planes. These torques were thought to arise partially from the application of excessive grip force and partially from a misalignment of the two grasping fingers. These torques were further increased by an imbalance in the pressure exerted by the two opposing fingers. Vision of the grasping hand did not significantly correct the finger misalignment after digital anesthesia. Taken together, these results suggest that mechanoreceptors in the fingertips signal the source and direction of pressure applied to the skin. The nervous system uses this information to adjust the fingers and direct the pinch forces optimally for grasping and object manipulation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…