-
- Y Ao, M Ko, A Chen, J C Marvizon, D Adelson, M K Song, V L W Go, Y Y Liu, and H Yang.
- Department of Medicine, Division of Digestive Diseases and Brain Research Institute, CURE, Digestive Diseases Research Center, University of California, Los Angeles, CA, USA.
- Neuroscience. 2010 Aug 25;169(2):706-19.
AbstractWe identified ventrolateral medullary nuclei in which thyrotropin-releasing hormone (TRH) regulates glucose metabolism by modulating autonomic activity. Immunolabeling revealed dense prepro-TRH-containing fibers innervating the rostroventrolateral medulla (RVLM) and nucleus ambiguus (Amb), which contain, respectively, pre-sympathetic motor neurons and vagal motor neurons. In anesthetized Wistar rats, microinjection of the stable TRH analog RX77368 (38-150 pmol) into the RVLM dose-dependently and site-specifically induced hyperglycemia and hyperinsulinemia. At 150 pmol, blood glucose reached a peak of 180+/-18 mg% and insulin increased 4-fold. The strongest hyperglycemic effect was induced when RX77368 was microinjected into C1 area containing adrenalin cells. Spinal cord transection at cervical-7 abolished the hyperglycemia induced by RVLM RX77368, but not the hyperinsulinemic effect. Bilateral vagotomy prevented the rise in insulin, resulting in a prolonged hyperglycemic response. The hyperglycemic and hyperinsulinemic effects of the TRH analog in the RVLM was peptide specific, since angiotensin II or a substance P analog at the same dose had weak or no effects. Microinjection of RX77368 into the Amb stimulated insulin secretion without influencing glucose levels. In conscious type 2 diabetic Goto-Kakizaki (GK) rats, intracisternal injection of RX77368 induced a remarkably amplified hyperglycemic effect with suppressed insulin response compared to Wistar rats. RX77368 microinjected into the RVLM of anesthetized GK rats induced a significantly potentiated hyperglycemic response and an impaired insulin response, compared to Wistar rats. These results indicate that the RVLM is a site at which TRH induces sympathetically-mediated hyperglycemia and vagally-mediated hyperinsulinemia, whereas the Amb is mainly a vagal activating site for TRH. Hyperinsulinemia induced by TRH in the RVLM is not secondary to the hyperglycemic response. The potentiated hyperglycemic and suppressed hyperinsulinemic responses in diabetic GK rats indicate that an unbalanced "sympathetic-over-vagal" activation by TRH in brainstem RVLM contributes to the pathophysiology of impaired glucose homeostasis in type 2 diabetes.Published by Elsevier Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.