• Medical care · Aug 2007

    Using automated clinical data for risk adjustment: development and validation of six disease-specific mortality predictive models for pay-for-performance.

    • Ying P Tabak, Richard S Johannes, and Jeffrey H Silber.
    • Department of Clinical Research, Cardinal Health's MediQual Business, Marlborough, MA 01752, USA. ying.tabak@cardinal.com
    • Med Care. 2007 Aug 1;45(8):789-805.

    BackgroundClinically plausible risk-adjustment methods are needed to implement pay-for-performance protocols. Because billing data lacks clinical precision, may be gamed, and chart abstraction is costly, we sought to develop predictive models for mortality that maximally used automated laboratory data and intentionally minimized the use of administrative data (Laboratory Models). We also evaluated the additional value of vital signs and altered mental status (Full Models).MethodsSix models predicting in-hospital mortality for ischemic and hemorrhagic stroke, pneumonia, myocardial infarction, heart failure, and septicemia were derived from 194,903 admissions in 2000-2003 across 71 hospitals that imported laboratory data. Demographics, admission-based labs, International Classification of Diseases (ICD)-9 variables, vital signs, and altered mental status were sequentially entered as covariates. Models were validated using abstractions (629,490 admissions) from 195 hospitals. Finally, we constructed hierarchical models to compare hospital performance using the Laboratory Models and the Full Models.ResultsModel c-statistics ranged from 0.81 to 0.89. As constructed, laboratory findings contributed more to the prediction of death compared with any other risk factor characteristic groups across most models except for stroke, where altered mental status was more important. Laboratory variables were between 2 and 67 times more important in predicting mortality than ICD-9 variables. The hospital-level risk-standardized mortality rates derived from the Laboratory Models were highly correlated with the results derived from the Full Models (average rho = 0.92).ConclusionsMortality can be well predicted using models that maximize reliance on objective pathophysiologic variables whereas minimizing input from billing data. Such models should be less susceptible to the vagaries of billing information and inexpensive to implement.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…