• Acta Anaesthesiol Scand · May 1996

    Randomized Controlled Trial Clinical Trial

    Atelectasis and pulmonary shunting during induction of general anaesthesia--can they be avoided?

    • H U Rothen, B Sporre, G Engberg, G Wegenius, A Reber, and G Hedenstierna.
    • Department of Anaesthesiology and Intensive Care, University Hospital, Bern, Switzerland.
    • Acta Anaesthesiol Scand. 1996 May 1;40(5):524-9.

    BackgroundGas exchange is regularly impaired during general anaesthesia with mechanical ventilation. A major cause of this disorder appears to be atelectasis and consequently pulmonary shunt. After re-expansion, atelectasis reappears very slowly if 30% oxygen in nitrogen is used, but much faster if 100% oxygen is used. The aim of the present study-was to evaluate if early formation of atelectasis and pulmonary shunt may be avoided if the lungs are ventilated with 30% oxygen in nitrogen instead of 100% oxygen during the induction of general anaesthesia.MethodsTwenty-four adult patients with healthy lungs scheduled for elective surgery were investigated. During induction of anaesthesia, the lungs were manually ventilated via a face mask, using either 30% oxygen in nitrogen (group 1, n = 12) or 100% oxygen (group 2, n = 12). Atelectasis was estimated by computed x-ray tomography and ventilation-perfusion distribution with the multiple inert gas elimination technique, both awake and during general anaesthesia with mechanical ventilation.ResultsNo atelectasis was present in the awake subjects. After induction of anaesthesia, the mean amount of atelectasis was minor (0.2 +/- 0.4 cm2) in group 1 and considerably greater (8.0 +/- 8.2 cm2) in group 2 (P < 0.001). The pulmonary shunt was 0.3 +/- 0.7% of cardiac output in the awake subjects. This value increased to 2.1 +/- 3.8% in group 1 and to 6.5 +/- 5.2% in group 2 (P < 0.05). The indices of VA/Q mismatch showed no difference between the two groups.ConclusionDuring induction of general intravenous anaesthesia in patients with healthy lungs, gas composition plays an important role for atelectasis formation and the establishment of pulmonary shunt. By using a mixture containing 30% oxygen in nitrogen, the early formation of atelectasis and pulmonary shunt may, at least in part, be avoided.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.