-
J Magn Reson Imaging · Nov 2013
MRI-based prediction of pulsed high-intensity focused ultrasound effect on tissue transport in rabbit muscle.
- Brian E O'Neill, Howard Q Vo, Hongwei Shao, Christof Karmonik, Xiaobo Zhou, and King C Li.
- Department of Translational Imaging, The Methodist Hospital Research Institute, Houston, Texas, USA.
- J Magn Reson Imaging. 2013 Nov 1;38(5):1094-102.
PurposeTo design an algorithm for optimizing pulsed high intensity focused ultrasound (p-HIFU) treatment parameters to maximize tissue transport while minimizing thermal necrosis based on MR image guidance.Materials And MethodsP-HIFU power, duty cycle, and treatment duration were varied to generate different levels of thermal and mechanical deposition in rabbit muscle. Changes in T2-weighted and T1 contrast-enhanced (CE) signal were assessed immediately following treatment and at 24 h. Transport parameters were extracted by means of T1-weighted dynamic contrast-enhanced MRI (DCE-MRI) technique at 0 and 24-h time points.ResultsSuccessful p-HIFU treatment was indicated by focal hyperintensity on the T2-weighted image immediately post-treatment, suggesting increased fluid (edema), with little intensity change in CE image. After 24 h, the affected region expanded along the muscle fiber accompanied by clear hyperintensity in CE image (contrast uptake). Quantitative DCE-MRI analysis revealed statistically significant increases in both leakage rate and extracellular space, accompanied by a decrease in clearance rate.ConclusionSuccessful p-HIFU treatment was mainly correlated to tissue heating. Tissue transport properties following treatment success would result in improved contact between drug and targets in both time and space. MRI is the key to controlling treatment by means of thermometry and also monitoring efficacy by means of T2-weighted imaging.Copyright © 2013 Wiley Periodicals, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.