• Brain research · Oct 2014

    Hes1, a Notch signaling downstream target, regulates adult hippocampal neurogenesis following traumatic brain injury.

    • Zhen Zhang, Rong Yan, Qi Zhang, Jia Li, Xiaokui Kang, Haining Wang, Linchun Huan, Lin Zhang, Fan Li, Shuyuan Yang, Jianning Zhang, Xinliang Ren, and Xinyu Yang.
    • Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, PR China; Tianjin Neurological Institute, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Heping District, Tianjin 300052, PR China. Electronic address: paperzzhang@gmail.com.
    • Brain Res. 2014 Oct 2;1583:65-78.

    AbstractHairy and enhancer of split 1 (Hes1), a downstream target of Notch signaling, has long been recognized as crucial in inhibiting neuronal differentiation. However, the role of Hes1 following traumatic brain injury (TBI) in adult neurogenesis in the mouse dentate gyrus (DG) remains partially understood. Here, we investigate the role of Hes1 in regulating neurogenesis in the DG of the adult hippocampus after TBI by up- or downregulating Hes1 expression. First, adenovirus-mediated gene transfection was employed to upregulate Hes1 in vivo. The mice were then subjected to TBI, and the hippocampal tissue was collected for Western blot analysis at designated times, pre- and post-injury. Moreover, the brain slices were stained for BrdU and doublecortin (DCX). We show that enhancing Hes1 inhibits the proliferation and differentiation of neural precursor cells (NPCs) in the DG of the hippocampus soon after TBI. Second, downregulation of Hes1 via RNA interference (RNAi) results in a significant increase in neuronal production and promotes the differentiation of NPCs into mature neurons in the DG, as assessed by BrdU and NeuN double staining. Furthermore, a Morris water maze (MWM) test clearly confirmed that the knockdown of Hes1 improves the spatial learning and memory capacity of adult mice following injury. Taken together, these observations suggest that Hes1 represents a negative regulator of adult neurogenesis post-TBI and that the precise space-time regulation of Hes1 expression in the DG may promote the recovery of neural function following TBI.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.