• J. Neurophysiol. · Jan 1984

    Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation.

    • D P Phillips and S S Orman.
    • J. Neurophysiol. 1984 Jan 1;51(1):147-63.

    AbstractIn the auditory cortex of barbiturate-anesthetized cats, the posterior auditory field (field P) was identified by its tonotopic organization, and single neurons in that field were studied quantitatively for their sensitivity to the frequency and intensity of tonal stimuli presented via calibrated, sealed stimulating systems. Field P neurons had narrow, V-shaped, threshold frequency tuning curves. At suprathreshold levels, spike counts were generally greatest at frequencies at or close to the neuron's threshold best frequency (BF). Eighty-six percent of posterior-field neurons displayed spike counts that were a nonmonotonic function of the intensity of a BF tone. Of these, over 90% showed at least a 50% reduction in spike count at high stimulus levels, and almost 20% of nonmonotonic cells ceased responding entirely at high stimulus intensities. The nonmonotonic shape of spike count-versus-intensity profiles was typically preserved across the range of frequencies to which any given neuron was responsive. For some neurons, this had the consequence of generating a completely circumscribed frequency-intensity response area. That is, these neurons responded to a tonal stimulus only if the stimulus was within a restricted range of both frequency and intensity. These response areas showed internal organizations that appeared to reflect one or both of two processes. For some neurons, the optimal sound pressure level for spike counts varied with tone frequency, roughly paralleling the threshold tuning curve. For other neurons, the optimal sound pressure level tended to be constant across frequency despite threshold variations of up to 20 dB. The minimum response latencies of posterior-field neurons were generally in the range of 20-50 ms, while cells in the primary auditory cortex (AI) in the same animals generally had minimum latent periods of less than 20 ms. Comparison of these data with those previously presented for neurons in two other cortical auditory fields suggests that the cat's auditory cortex might show an interfield segregation of neurons according to their coding properties.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…