• Neuroscience · Jan 2003

    Comparative Study

    Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms.

    • R L Gannon.
    • Department of Biology, Dowling College, Oakdale, Long Island, NY 11769, USA. gannonr@dowling.edu
    • Neuroscience. 2003 Jan 1;119(2):567-76.

    AbstractThe biological clock that generates circadian rhythms in mammals is located within the suprachiasmatic nuclei at the base of the hypothalamus. The circadian clock is entrained to the daily light/dark cycle by photic information from the retina. The retinal input to the clock is inhibited by exogenously applied serotonin agonists, perhaps mimicking an endogenous inhibitory serotonergic input to the clock arriving from the midbrain raphe. In the present study, a unique class of serotonergic compounds was tested for its ability to modulate retinal input to the circadian clock. The serotonergic ligands 8-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-8-azaspiro(4.5)decane-7,9-dione dihydrochloride (BMY 7378), S 15535, and 8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione hydrochloride (MDL 73005 EF) can all be classified as mixed agonists/antagonists at type 1A serotonin receptors. Circadian wheel-running activity rhythms were monitored in Syrian hamsters maintained in constant darkness. Dim white-light pulses administered to the hamsters at circadian time 19 advanced the phase of their running rhythms by 1-2 h. Injection of BMY 7378, S 15535, and to a lesser degree MDL 73005 EF, prior to the light pulses resulted in phase advances from 5 to 6 h, and by as much as 8 h. Neither BMY 7378 nor S 15535 had any effect on light-induced phase delays in hamster activity rhythms at circadian time 14. Further, BMY 7378 is able to phase advance circadian rhythms by approximately 1 h at night even without light exposure. Finally, the effects of BMY 7378 on circadian rhythms is opposite to that observed with the prototypical serotonin 1A agonist (+/-)-8-hydroxy-2-(DI-n-propyl-amino)tetralin hydrobromide (8-OH-DPAT) (8-OH-DPAT elicits non-photic phase advances in the day and inhibits photic-induced phase advances at night). These results suggest that pharmacologically blocking raphe input to the suprachiasmatic circadian clock results in substantially larger photically induced phase advances in wheel-running rhythms. This is further evidence that raphe input to the circadian clock is probably acting to dampen the clock's response to light under certain conditions. The large-magnitude phase shifts, and temporal-activity profile seen with BMY 7378 and S 15535, suggest that compounds with this unique pharmacological profile may be beneficial in the treatment of circadian phase delays recently reported to be a complication resulting from Alzheimer's disease.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.