• Resp Care · Feb 2011

    Review

    Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 1: respiratory muscle function during critical illness.

    • Richard H Kallet.
    • Department of Anesthesia, University of California, San Francisco, CA, USA. rkallet@sfghsom.ucsf.edu
    • Resp Care. 2011 Feb 1;56(2):181-9.

    AbstractSince the early 1970s there has been an ongoing debate regarding the wisdom of promoting unassisted spontaneous breathing throughout the course of critical illness in patients with severe respiratory failure. The basis of this debate has focused on the clinical relevance of opposite problems. Historically, the term "disuse atrophy" has described a situation wherein sustained inactivity of the respiratory muscles (ie, passive ventilation) results in deconditioning and weakness. More recently it has been referred to as "ventilator-induced diaphragmatic dysfunction." In contrast, "use atrophy" describes a situation where chronic high-tension inspiratory work causes structural damage to the diaphragm and weakness. Both laboratory and clinical studies demonstrated that relatively brief periods of complete respiratory muscle inactivity, as well as intense muscle loading, result in acute inflammation, loss of muscle mass, and weakness. Yet in critical illness other factors also affect respiratory muscle function, including prolonged use of neuromuscular blocking agents, administration of corticosteroids, and sepsis. This makes the attribution of acquired respiratory muscle weakness and ventilator-dependence to either ventilator-induced diaphragmatic dysfunction or loaded breathing extremely difficult. Regardless, the clinical implications of this research strongly suggest that passive mechanical ventilation should be avoided whenever possible. However, promotion of unassisted spontaneous breathing in the acute phase of critical illness also may carry a substantial risk of respiratory muscle injury and weakness. Use of mechanical ventilation modes in a manner that induces spontaneous breathing effort, while simultaneously reducing the work load on the respiratory muscles, is probably sufficient to minimize both problems.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…