• Critical care medicine · Feb 1995

    Pressure-controlled, inverse ratio ventilation that avoids air trapping in the adult respiratory distress syndrome.

    • B W Armstrong and N R MacIntyre.
    • Division of Cardiac Surgery, Scripps Clinic and Research Foundation, La Jolla, CA.
    • Crit. Care Med. 1995 Feb 1;23(2):279-85.

    ObjectivesTo investigate physiologic and outcome data in patients switched from volume-cycled conventional ratio ventilation to pressure-controlled inverse ratio ventilation that did not produce air trapping and intrinsic positive end-expiratory pressure (PEEP).SettingMedical intensive care unit.DesignRetrospective analysis of crossover data and outcome.PatientsFourteen patients with the adult respiratory distress syndrome who were receiving mechanical ventilation with volume-cycled, conventional ratio ventilation followed by pressure-controlled, inverse ratio ventilation.InterventionsOur approach to pressure-controlled, inverse ratio ventilation was to use tidal volumes and applied PEEP values comparable to those volumes and values used on volume-cycled, conventional ratio ventilation, use inspiratory times to increase mean airway pressure instead of additional applied PEEP, and avoid air trapping (intrinsic PEEP).Measurements And Main ResultsWith this approach, there was a reduction in peak airway pressure from 53 +/- 8.5 (SD) to 40 +/- 5.9 cm H2O (p < .01), and an increase in mean airway pressure from 20 +/- 3.9 to 30 +/- 5.2 cm H2O (p < .01). Tidal volume, mean inflation pressure, and compliance did not change. Oxygenation (PaO2) improved from 57 +/- 11.3 torr (7.6 +/- 1.5 kPa) to 94 +/- 40.2 torr (12.5 +/- 5.4 kPa) (p = .01) but the oxygenation index (mean airway pressure x FIO2 x 100/PaO2) did not change significantly (25.9 +/- 10.3 to 27.2 +/- 12.2). There was no significant change in PaCO2 or pH even though delivered minute ventilation decreased from 17.4 +/- 4.3 to 14.8 +/- 5.8 L/min (p = .02). Cardiac index slightly decreased, but hemodynamic values were otherwise stable. Only three of the 14 study patients survived.ConclusionsThese data demonstrate that oxygenation is primarily a function of mean airway pressure, and that longer inspiratory times can be used as an alternative to applied PEEP to increase this oxygenation. If no air trapping develops, lung inflation pressures and delivered volumes remain constant with this approach. Because the technique was used only in patients refractory to conventional techniques, the poor outcome is not surprising.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.