• J. Neurophysiol. · Oct 2014

    Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats.

    • Giuseppe D'Angelo, Yann Thibaudier, Alessandro Telonio, Marie-France Hurteau, Victoria Kuczynski, Charline Dambreville, and Alain Frigon.
    • Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
    • J. Neurophysiol. 2014 Oct 15;112(8):1825-37.

    AbstractStepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically.Copyright © 2014 the American Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…